
Secure CPU configuration for KVM-based guests

Kashyap Chamarthy <kchamart@redhat.com>

Red Hat Tech Day
Brussels; 24 Jan 2020

1 / 36

Timeline of recent CPU flaws, 2018 (a)

Jan 03• Spectre v1

Jan 03• Spectre v2

Jan 03• Meltdown

May 21• Spectre-NG

Jun 21• TLBleed

2 / 36

Timeline of recent CPU flaws, 2018 (b)

Jun 29• NetSpectre

Jul 10• Spectre-NG

Aug 14• L1TF (Foreshadow)

Nov 01• PortSmash

3 / 36

Timeline of recent CPU flaws, 2019 (a)

May 14• ZombieLoad

May 14• RIDL

May 14• Fallout - TAA

May 14• Microarchitectural Data Sampling

4 / 36

Timeline of recent CPU flaws, 2019 (b)

Oct 30• Another variant of L1TF

Nov 12• New variants of TAA & RDIL

. . . • ?

5 / 36

What this talk is not about

Out of scope:

Internals of various side-channel attacks
Exploitation techniques
Detailed performance analysis

 Related talks in the ‘References’ section

6 / 36

What this talk is not about

Out of scope:

Internals of various side-channel attacks
Exploitation techniques
Detailed performance analysis

 Related talks in the ‘References’ section

6 / 36

What this talk is not about

Out of scope:

Internals of various side-channel attacks
Exploitation techniques
Detailed performance analysis

 Related talks in the ‘References’ section

6 / 36

KVM-based virtualization components

Linux with KVM

QEMU
VM1

QEMU
VM2

Disk Disk

libvirtd

OpenStack,
KubeVirt, etc.

libguestfs

Custom
Appliance

Virt Driver

QMP QMP

ioctl()

7 / 36

KVM-based virtualization components

Linux with KVM

QEMU
VM1

QEMU
VM2

Disk Disk

libvirtd

OpenStack,
KubeVirt, etc.

libguestfs

Custom
Appliance

Virt Driver

QMP QMP

ioctl()

7 / 36

KVM-based virtualization components

Linux with KVM

QEMU
VM1

QEMU
VM2

Disk Disk

libvirtd

OpenStack,
KubeVirt, etc.

libguestfs

Custom
Appliance

Virt Driver

QMP QMP

ioctl()

7 / 36

KVM-based virtualization components

Linux with KVM

QEMU
VM1

QEMU
VM2

Disk Disk

libvirtd

OpenStack,
KubeVirt, etc.

libguestfs

Custom
Appliance

Virt Driver

QMP QMP

ioctl()

7 / 36

KVM-based virtualization components

Linux with KVM

QEMU
VM1

QEMU
VM2

Disk Disk

libvirtd

OpenStack,
KubeVirt, etc.

libguestfs

Custom
Appliance

Virt Driver

QMP QMP

ioctl()

7 / 36

KVM and QEMU: the insides
QEMU

Host
kernel

Hardware: Intel VMX extensions

Guest RAM

e1000e NVMe VirtIO-SCSI

vCPU-1 vCPU-2

[kvm.ko; kvm-intel.ko]
VMX modes: guest↔host
Emulation: CPUID, irqchip

ioctl()→/dev/kvm

VMLAUNCH, ...

To inspect, use
Linux tools:
top, kill, ...

8 / 36

KVM and QEMU: the insides
QEMU

Host
kernel

Hardware: Intel VMX extensions

Guest RAM

e1000e NVMe VirtIO-SCSI

vCPU-1 vCPU-2

[kvm.ko; kvm-intel.ko]
VMX modes: guest↔host
Emulation: CPUID, irqchip

ioctl()→/dev/kvm

VMLAUNCH, ...

To inspect, use
Linux tools:
top, kill, ...

8 / 36

Hardware-based virtualization with KVM

KVM prepares
to enter CPU
‘Guest Mode’

Perform in-kernel
emulation

Emulate
in-kernel?

QEMU issues
ioctl(KVM_RUN)

QEMU emulates
hardware

Execute natively
in ‘Guest Mode’.
(CPU with VMX)

No

Yes

VMENTER

VMEXIT

9 / 36

Part I
Ways to configure virtual CPUs

10 / 36

x86: QEMU’s default CPU models (a)

The default models (qemu32, qemu64) work on any host CPU

But they are dreadful choices!

No AES / AES-NI: critical for TLS performance
No RDRAND: important for entropy
No PCID: performance- & security-critical (thanks, Meltdown)

11 / 36

x86: QEMU’s default CPU models (a)

The default models (qemu32, qemu64) work on any host CPU

But they are dreadful choices!

No AES / AES-NI: critical for TLS performance
No RDRAND: important for entropy
No PCID: performance- & security-critical (thanks, Meltdown)

11 / 36

x86: QEMU’s default CPU models (a)

The default models (qemu32, qemu64) work on any host CPU

But they are dreadful choices!

No AES / AES-NI: critical for TLS performance
No RDRAND: important for entropy
No PCID: performance- & security-critical (thanks, Meltdown)

11 / 36

x86: QEMU’s default CPU models (b)

$ cd /sys/devices/system/cpu/vulnerabilities/
$ grep . *
l1tf:Mitigation: PTE Inversion
mds:Vulnerable: ... no microcode; SMT Host state unknown
meltdown:Mitigation: PTI
spec_store_bypass:Vulnerable
spectre_v1:Mitigation: usercopy/swapgs barriers ...
spectre_v2:Mitigation: Full generic retpoline ...

 Always specify a CPU model; or use libvirt’s host-model

12 / 36

x86: QEMU’s default CPU models (b)

$ cd /sys/devices/system/cpu/vulnerabilities/cd /sys/devices/system/cpu/vulnerabilities/
$ grep . *grep . *
l1tf:Mitigation: PTE Inversion
mds:Vulnerable: ... no microcode; SMT Host state unknown
meltdown:Mitigation: PTI
spec_store_bypass:Vulnerable
spectre_v1:Mitigation: usercopy/swapgs barriers ...
spectre_v2:Mitigation: Full generic retpoline ...

 Always specify a CPU model; or use libvirt’s host-model

12 / 36

In a VM, running with qemu64

x86: QEMU’s default CPU models (b)

$ cd /sys/devices/system/cpu/vulnerabilities/
$ grep . *
l1tf:Mitigation: PTE Inversion
mds:Vulnerable: ... no microcode; SMT Host state unknownmds:Vulnerable: ... no microcode; SMT Host state unknown
meltdown:Mitigation: PTI
spec_store_bypass:Vulnerable
spectre_v1:Mitigation: usercopy/swapgs barriers ...
spectre_v2:Mitigation: Full generic retpoline ...

 Always specify a CPU model; or use libvirt’s host-model

12 / 36

Microarchitectural Data Sampling

x86: QEMU’s default CPU models (b)

$ cd /sys/devices/system/cpu/vulnerabilities/
$ grep . *
l1tf:Mitigation: PTE Inversion
mds:Vulnerable: ... no microcode; SMT Host state unknown
meltdown:Mitigation: PTI
spec_store_bypass:Vulnerablespec_store_bypass:Vulnerable
spectre_v1:Mitigation: usercopy/swapgs barriers ...
spectre_v2:Mitigation: Full generic retpoline ...

 Always specify a CPU model; or use libvirt’s host-model

12 / 36

Spectre-NG

x86: QEMU’s default CPU models (b)

$ cd /sys/devices/system/cpu/vulnerabilities/
$ grep . *
l1tf:Mitigation: PTE Inversion
mds:Vulnerable: ... no microcode; SMT Host state unknown
meltdown:Mitigation: PTI
spec_store_bypass:Vulnerable
spectre_v1:Mitigation: usercopy/swapgs barriers ...
spectre_v2:Mitigation: Full generic retpoline ...

 Always specify a CPU model; or use libvirt’s host-model
12 / 36

Defaults of non-x86 architectures?

AArch64: Doesn’t provide a default guest CPU
$ qemu-system-aarch64 -machine virt -cpu help

ppc64 — ‘host’ for KVM; ‘power8’ for TCG (pure emulation)

s390x — ‘host’ for KVM; ‘qemu’ for TCG

13 / 36

Defaults of non-x86 architectures?

AArch64: Doesn’t provide a default guest CPU
$ qemu-system-aarch64 -machine virt-machine virt -cpu help

ppc64 — ‘host’ for KVM; ‘power8’ for TCG (pure emulation)

s390x — ‘host’ for KVM; ‘qemu’ for TCG

13 / 36

Default CPU depends on
the “machine type”

Defaults of non-x86 architectures?

AArch64: Doesn’t provide a default guest CPU
$ qemu-system-aarch64 -machine virt -cpu help

ppc64 — ‘host’ for KVM; ‘power8’ for TCG (pure emulation)

s390x — ‘host’ for KVM; ‘qemu’ for TCG

13 / 36

Configure guest CPU on the command-line

On x86, by default, the qemu64 model is used:

$ qemu-system-x86_64 [...]

Specify a particular CPU model:
$ qemu-system-x86_64 -cpu Broadwell-noTSX-IBRS [...]

14 / 36

Configure guest CPU on the command-line

On x86, by default, the qemu64 model is used:

$ qemu-system-x86_64 [...]

Specify a particular CPU model:
$ qemu-system-x86_64 -cpu Broadwell-noTSX-IBRS [...]

14 / 36

Configure guest CPU on the command-line

On x86, by default, the qemu64 model is used:

$ qemu-system-x86_64 [...]

Specify a particular CPU model:
$ qemu-system-x86_64 -cpu Broadwell-noTSX-IBRS-cpu Broadwell-noTSX-IBRS [...]

14 / 36

Named CPU model

Control guest CPU features

Enable or disable specific features for a vCPU model:
$ qemu-system-x86_64 \

-cpu Haswell-noTSX-IBRS,vmx=off,pcid=on [...]

To get the list of supported vCPU models:
$ qemu-system-x86_64 -cpu help

Or via libvirt: virsh cpu-models x86_64

15 / 36

Control guest CPU features

Enable or disable specific features for a vCPU model:
$ qemu-system-x86_64 \

-cpu Haswell-noTSX-IBRS-cpu Haswell-noTSX-IBRS,vmx=off,pcid=on [...]

To get the list of supported vCPU models:
$ qemu-system-x86_64 -cpu help

Or via libvirt: virsh cpu-models x86_64

15 / 36

Named CPU model

Control guest CPU features

Enable or disable specific features for a vCPU model:
$ qemu-system-x86_64 \

-cpu Haswell-noTSX-IBRS,vmx=offvmx=off,pcid=onpcid=on [...]

To get the list of supported vCPU models:
$ qemu-system-x86_64 -cpu help

Or via libvirt: virsh cpu-models x86_64

15 / 36

Granular CPU flags

Control guest CPU features

Enable or disable specific features for a vCPU model:
$ qemu-system-x86_64 \

-cpu Haswell-noTSX-IBRS,vmx=off,pcid=on [...]

To get the list of supported vCPU models:
$ qemu-system-x86_64 -cpu help

Or via libvirt: virsh cpu-models x86_64

15 / 36

Part II
CPU modes, models, and flags

16 / 36

(1) Host passthrough

Exposes the host CPU model, features, etc. as-is to the VM
$ qemu-system-x86_64 -cpu host [...]

Caveats:

No guarantee of a predictable CPU for the guest
Live migration is a no go with mixed host CPUs

 Most performant; ideal—if live migration is not required

17 / 36

(1) Host passthrough

Exposes the host CPU model, features, etc. as-is to the VM
$ qemu-system-x86_64 -cpu host [...]

Caveats:
No guarantee of a predictable CPU for the guest

Live migration is a no go with mixed host CPUs

 Most performant; ideal—if live migration is not required

17 / 36

(1) Host passthrough

Exposes the host CPU model, features, etc. as-is to the VM
$ qemu-system-x86_64 -cpu host [...]

Caveats:
No guarantee of a predictable CPU for the guest
Live migration is a no go with mixed host CPUs

 Most performant; ideal—if live migration is not required

17 / 36

(1) Host passthrough

Exposes the host CPU model, features, etc. as-is to the VM
$ qemu-system-x86_64 -cpu host [...]

Caveats:
No guarantee of a predictable CPU for the guest
Live migration is a no go with mixed host CPUs

 Most performant; ideal—if live migration is not required

17 / 36

(1) Host passthrough—when else to use it?

Data Center (Intel host CPUs)

Broadwell Broadwell Broadwell Broadwell

Broadwell Broadwell Broadwell Broadwell

 Along with identical CPUs, identical kernel and
microcode are a must for VM live migration!

18 / 36

(1) Host passthrough—when else to use it?

Data Center (Intel host CPUs)

Broadwell Broadwell Broadwell Broadwell

Broadwell Broadwell Broadwell Broadwell

 Along with identical CPUs, identical kernel and
microcode are a must for VM live migration!

18 / 36

(2) QEMU’s named CPU models
Virtual CPUs typically model physical CPUs

Add or remove CPU features:
$ qemu-system-x86_64 -cpu Broadwell-IBRS,\

vme=on,f16c=on,rdrand=on, \
tsc_adjust=on,xsaveopt=on,\
hypervisor=on,arat=off, \
pdpe1gb=on,abm=on [...]

 More flexible in live migration than ‘host passthrough’

19 / 36

(2) QEMU’s named CPU models
Virtual CPUs typically model physical CPUs

Add or remove CPU features:
$ qemu-system-x86_64 -cpu Broadwell-IBRS,\

vme=on,f16c=on,rdrand=on, \
tsc_adjust=on,xsaveopt=on,\
hypervisor=on,arat=off, \
pdpe1gb=on,abm=on [...]

 More flexible in live migration than ‘host passthrough’
19 / 36

(2) QEMU’s named CPU models

QEMU is built with a number of pre-defined models:
$ qemu-system-x86_64 -cpu help
Available CPUs:
...
x86 Broadwell-IBRS Intel Core Processor (Broadwell, IBRS)
...
x86 EPYC AMD EPYC Processor
x86 EPYC-IBPB AMD EPYC Processor (with IBPB)
x86 Haswell Intel Core Processor (Haswell)
...
Recognized CPUID flags:
amd-ssbd apic arat arch-capabilities avx avx2 avx512-4fmaps
...

20 / 36

(3) ‘host-model’—a libvirt abstraction

Tackles a few things:

Maximum possible CPU features from the host
Live migration compatibility—with caveats
Auto-adds critical guest CPU flags (e.g. spec-ctrl)

;
provided—microcode, kernel, QEMU & libvirt are updated

 Targets for the best of ‘host passthrough’ and
named CPU models

21 / 36

(3) ‘host-model’—a libvirt abstraction

Tackles a few things:

Maximum possible CPU features from the host
Live migration compatibility—with caveats
Auto-adds critical guest CPU flags (e.g. spec-ctrl);
provided—microcode, kernel, QEMU & libvirt are updated

 Targets for the best of ‘host passthrough’ and
named CPU models

21 / 36

(3) ‘host-model’—a libvirt abstraction

Tackles a few things:

Maximum possible CPU features from the host
Live migration compatibility—with caveats
Auto-adds critical guest CPU flags (e.g. spec-ctrl);
provided—microcode, kernel, QEMU & libvirt are updated

 Targets for the best of ‘host passthrough’ and
named CPU models

21 / 36

(3) ‘host-model’—example libvirt config

From a libvirt guest definition:
<cpu mode=’host-model’>

<feature policy=’require’ name=’vmx’/>
<feature policy=’disable’ name=’pdpe1gb’/>
...

</cpu>

 libvirt will translate it into a suitable CPU model,
based on ‘virsh domcapabilities’

22 / 36

(3) ‘host-model’ and live migration

As done by libvirt:
Source vCPU definition is transferred as-is to the target
On target: Migrated guest retains the source vCPU model

�

But: When the guest cold-reboots, it
can pick up extra CPU features

 Use host-model if live migration in both directions
is not a requirement

23 / 36

(3) ‘host-model’ and live migration

As done by libvirt:
Source vCPU definition is transferred as-is to the target
On target: Migrated guest retains the source vCPU model

�

But: When the guest cold-reboots, it
can pick up extra CPU features

 Use host-model if live migration in both directions
is not a requirement

23 / 36

CPU config with management tools
Most tools offer some form of (e.g. from OpenStack):
$ cat /etc/nova/nova.conf
...
[libvirt]
cpu_mode = custom # or: host-model/host-passthrough
cpu_model = Broadwell-noTSX-IBRS
cpu_model_extra_flags = ssbd, pdpe1gb
...

 Possible CPU models/flags: ‘qemu-kvm -cpu help’
24 / 36

Part III
Choosing CPU models & features

25 / 36

Finding compatible CPU models

Data Center (Intel host CPUs)

Haswell Westmere IvyBridge SandyBridge

Nehalem Broadwell Westmere Nehalem-IBRS

26 / 36

Finding compatible CPU models

Problem: Determine a compatible model among CPU variants

Enter libvirt’s APIs:
compareCPU() and baselineCPU()

compareHypervisorCPU() and baselineHypervisorCPU()

↖
Available in libvirt 4.4.0+

27 / 36

Finding compatible CPU models

Problem: Determine a compatible model among CPU variants

Enter libvirt’s APIs:
compareCPU() and baselineCPU()
compareHypervisorCPU() and baselineHypervisorCPU()

↖
Available in libvirt 4.4.0+

27 / 36

Intersection between these two host CPUs?
$ cat Multiple-Host-CPUs.xml
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Haswell-noTSX-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’require’ name=’vmx’/>
<feature policy=’require’ name=’rdrand’/>

</cpu>
<!–- Second CPU –->
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Skylake-Client-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’disable’ name=’pdpe1gb’/>
<feature policy=’disable’ name=’pcid’/>

</cpu>
28 / 36

Intersection between these two host CPUs?
$ cat Multiple-Host-CPUs.xml
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Haswell-noTSX-IBRSHaswell-noTSX-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’require’ name=’vmx’/>
<feature policy=’require’ name=’rdrand’/>

</cpu>
<!–- Second CPU –->
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Skylake-Client-IBRSSkylake-Client-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’disable’ name=’pdpe1gb’/>
<feature policy=’disable’ name=’pcid’/>

</cpu>
28 / 36

Two CPU
models

Use baselineHypervisorCPU() to determine it

$ virsh hypervisor-cpu-baseline Multiple-Host-CPUs.xml
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Haswell-noTSX-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’require’ name=’rdrand’/>
<feature policy=’disable’ name=’pcid’/>

</cpu>

 A “baseline” CPU model that permits live migration

29 / 36

Use baselineHypervisorCPU() to determine it

$ virsh hypervisor-cpu-baseline Multiple-Host-CPUs.xml
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Haswell-noTSX-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’require’ name=’rdrand’/><feature policy=’require’ name=’rdrand’/>
<feature policy=’disable’ name=’pcid’/><feature policy=’disable’ name=’pcid’/>

</cpu>

 A “baseline” CPU model that permits live migration

29 / 36

Intersection between our
Haswell & Skylake variants

Use baselineHypervisorCPU() to determine it

$ virsh hypervisor-cpu-baseline Multiple-Host-CPUs.xml
<cpu mode=’custom’ match=’exact’>

<model fallback=’forbid’>Haswell-noTSX-IBRS</model>
<vendor>Intel</vendor>
<feature policy=’require’ name=’rdrand’/>
<feature policy=’disable’ name=’pcid’/>

</cpu>

 A “baseline” CPU model that permits live migration

29 / 36

x86: QEMU’s “machine types”

Two main purposes:

1 Emulate different chipsets (and related devices)—e.g. Intel’s
i440FX (a.k.a ‘pc’) and Q35

2 Provide a stable guest ABI—virtual hardware remains
identical regardless of changes in host software / hardware

30 / 36

x86: QEMU’s “machine types”

Two main purposes:

1 Emulate different chipsets (and related devices)—e.g. Intel’s
i440FX (a.k.a ‘pc’) and Q35

2 Provide a stable guest ABI—virtual hardware remains
identical regardless of changes in host software / hardware

30 / 36

x86: QEMU’s “machine types”

Two main purposes:

1 Emulate different chipsets (and related devices)—e.g. Intel’s
i440FX (a.k.a ‘pc’) and Q35

2 Provide a stable guest ABI—virtual hardware remains
identical regardless of changes in host software / hardware

30 / 36

x86: QEMU’s “machine types”, versioned

$ qemu-system-x86_64 -machine help
...
pc Standard PC (i440FX + PIIX, 1996) (alias of pc-i440fx-4.2)
pc-i440fx-4.2 Standard PC (i440FX + PIIX, 1996) (default)
pc-i440fx-4.1 Standard PC (i440FX + PIIX, 1996)
...
q35 Standard PC (Q35 + ICH9, 2009) (alias of pc-q35-4.2)
pc-q35-4.2 Standard PC (Q35 + ICH9, 2009)
pc-q35-4.1 Standard PC (Q35 + ICH9, 2009)
pc-q35-4.0.1 Standard PC (Q35 + ICH9, 2009)
...

 Versioned machine types provide stable guest ABI

31 / 36

x86: QEMU’s “machine types”, versioned

$ qemu-system-x86_64 -machine help
...
pcpc Standard PC (i440FX + PIIX, 1996) (alias of pc-i440fx-4.2)(alias of pc-i440fx-4.2)
pc-i440fx-4.2pc-i440fx-4.2 Standard PC (i440FX + PIIX, 1996) (default)(default)
pc-i440fx-4.1 Standard PC (i440FX + PIIX, 1996)
...
q35 Standard PC (Q35 + ICH9, 2009) (alias of pc-q35-4.2)
pc-q35-4.2 Standard PC (Q35 + ICH9, 2009)
pc-q35-4.1 Standard PC (Q35 + ICH9, 2009)
pc-q35-4.0.1 Standard PC (Q35 + ICH9, 2009)
...

 Versioned machine types provide stable guest ABI

31 / 36

Traditional

x86: QEMU’s “machine types”, versioned

$ qemu-system-x86_64 -machine help
...
pc Standard PC (i440FX + PIIX, 1996) (alias of pc-i440fx-4.2)
pc-i440fx-4.2 Standard PC (i440FX + PIIX, 1996) (default)
pc-i440fx-4.1 Standard PC (i440FX + PIIX, 1996)
...
q35q35 Standard PC (Q35 + ICH9, 2009) (alias of pc-q35-4.2)(alias of pc-q35-4.2)
pc-q35-4.2 Standard PC (Q35 + ICH9, 2009)
pc-q35-4.1 Standard PC (Q35 + ICH9, 2009)
pc-q35-4.0.1 Standard PC (Q35 + ICH9, 2009)
...

 Versioned machine types provide stable guest ABI
31 / 36

Recommended

Why bother with machine types?

Changing machine types is guest-visible

After a QEMU upgrade, when using libvirt:

Need a distinct request to upgrade machine type

The guest needs a cold-reboot—an explicit stop + start;
only then does it pick up the new machine type

 Change machine types only after guest workload
evaluation—CPU features & devices can differ

32 / 36

Why bother with machine types?

Changing machine types is guest-visible

After a QEMU upgrade, when using libvirt:

Need a distinct request to upgrade machine type

The guest needs a cold-reboot—an explicit stop + start;
only then does it pick up the new machine type

 Change machine types only after guest workload
evaluation—CPU features & devices can differ

32 / 36

Why bother with machine types?

Changing machine types is guest-visible

After a QEMU upgrade, when using libvirt:

Need a distinct request to upgrade machine type
The guest needs a cold-reboot—an explicit stop + start;
only then does it pick up the new machine type

 Change machine types only after guest workload
evaluation—CPU features & devices can differ

32 / 36

Why bother with machine types?

Changing machine types is guest-visible

After a QEMU upgrade, when using libvirt:

Need a distinct request to upgrade machine type
The guest needs a cold-reboot—an explicit stop + start;
only then does it pick up the new machine type

 Change machine types only after guest workload
evaluation—CPU features & devices can differ

32 / 36

Patching guest CPU models

1 Update microcode, host & guest kernels;
refer to /sys/devices/system/cpu/vulnerabilities/

2 Then, update libvirt & QEMU on the host
3 Now tell the management tool to update guest
CPUs to their patched variants—e.g. the *-IBRS models

4 Cold-reboot the guests—to pick up new CPUID bits

 Guidance: qemu/docs/qemu-cpu-models.texi

33 / 36

https://git.qemu.org/?p=qemu.git;a=blob;f=docs/qemu-cpu-models.texi

Patching guest CPU models

1 Update microcode, host & guest kernels;
refer to /sys/devices/system/cpu/vulnerabilities/

2 Then, update libvirt & QEMU on the host

3 Now tell the management tool to update guest
CPUs to their patched variants—e.g. the *-IBRS models

4 Cold-reboot the guests—to pick up new CPUID bits

 Guidance: qemu/docs/qemu-cpu-models.texi

33 / 36

https://git.qemu.org/?p=qemu.git;a=blob;f=docs/qemu-cpu-models.texi

Patching guest CPU models

1 Update microcode, host & guest kernels;
refer to /sys/devices/system/cpu/vulnerabilities/

2 Then, update libvirt & QEMU on the host
3 Now tell the management tool to update guest
CPUs to their patched variants—e.g. the *-IBRS models

4 Cold-reboot the guests—to pick up new CPUID bits

 Guidance: qemu/docs/qemu-cpu-models.texi

33 / 36

https://git.qemu.org/?p=qemu.git;a=blob;f=docs/qemu-cpu-models.texi

x86: Important CPU features

To provide mitigation for MDS, Spectre, Meltdown et al:
Intel : ssbd, pcid, spec-ctrl, tsx-ctrl,

md-clear, mds-no, taa-no
AMD : virt-ssbd, amd-ssbd, amd-no-ssb, ibpb

�

Some of these are built into QEMU’s
versioned CPU models; refer to
‘qemu-kvm -cpu help’

34 / 36

x86: Important CPU features

To provide mitigation for MDS, Spectre, Meltdown et al:
Intel : ssbd, pcid, spec-ctrl, tsx-ctrl,

md-clear, mds-no, taa-no
AMD : virt-ssbd, amd-ssbd, amd-no-ssb, ibpb

�

Some of these are built into QEMU’s
versioned CPU models; refer to
‘qemu-kvm -cpu help’

34 / 36

Recap

→ Don’t use the built-in default, qemu64 model

→ Identical host CPUs? Go with host-passthrough

→ Mixed CPUs: host-model; or a custom baseline

→ Evaluate workloads before changing machine types

→ Pay attention to CPU flags when updating CPU models

35 / 36

References
CPU model configuration for QEMU/KVM x86 hosts
https://git.qemu.org/?p=qemu.git;a=blob;f=docs/qemu-cpu-models.texi

Microarchitural Data Sampling (MDS) - Virtualization mitigation
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html

Making use of Spectre/Meltdown mitigation for KVM guests
https://www.qemu.org/2018/02/14/qemu-2-11-1-and-spectre-update

Mitigating Spectre and Meltdown (and L1TF), by David Woodhouse
https://kernel-recipes.org/en/2018/talks/mitigating-spectre-and-meltdown-vulnerabilities/

Exploiting modern microarchitectures—Meltdown, Spectre, and other
hardware attacks, by Jon Masters
https://archive.fosdem.org/2018/schedule/event/closing_keynote

36 / 36

https://git.qemu.org/?p=qemu.git;a=blob;f=docs/qemu-cpu-models.texi
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html
https://www.qemu.org/2018/02/14/qemu-2-11-1-and-spectre-update
https://kernel-recipes.org/en/2018/talks/mitigating-spectre-and-meltdown-vulnerabilities/
https://archive.fosdem.org/2018/schedule/event/closing_keynote

	Ways to configure virtual CPUs
	CPU modes, models, and flags
	Choosing CPU models & features

